Тема4 Непрерывность функции

4.1 Определение непрерывной функции

Рассмотрим теперь класс функций, определенных в некоторой окрестности точки x_0 , в самой точке x_0 функция может быть определена или неопределённа

Def $\underline{\mathbf{1}}$ Функция y = f(x) называется непрерывной

в точке x_0 , если

1.она определена в точке x_0 ,

2. существует конечный предел при $x \to x_0$,

$$\exists \lim_{x \to x_0} f(x)$$

3. предел существует и равен значению функции в точке x_0

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Записав определение на языке " $\varepsilon-\delta$ ",получим

Def 2 Функция y = f(x) называется непрерывной

в точке x_0 , если

1.она определена в точке x_0 ,

2. функция y = f(x) определена в некоторой окрестности точки x_0

$$3. \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 \quad \forall x : 0 < |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Следствие 1

Предел непрерывной функции равен функции от предела, т.е.

$$\lim_{x \to x_0} f(x) = f(x_0) = f\left(\lim_{x \to x_0} x\right) = >$$

Знак предела и знак непрерывной функции можно менять местами.

Лекция 4

Для получения еще одного определения непрерывной функции возьмем $x_0 \in$ ОДЗ функции y = f(x) вместе с некоторой окрестностью. Дадим в точке x_0 приращение Δx любого знака. Тогда

функция y = f(x) получит некоторое приращение

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

Из def 1 функция y = f(x) непрерывна в точке x_0 , если

$$\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0) = >$$

или

$$\lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0 = 0$$

или

$$\lim_{\Delta x \to 0} \Delta y = 0$$

Таким образом получаем третье определение функции y = f(x) непрерывной в точке x_0 , с помощью приращений.

Def <u>3</u> Функция y = f(x) называется непрерывной

в точке x_0 , если функция y=f(x) определена в точке x_0 и в некоторой окрестности точки x_0 , и предел приращения функции равен нулю, когда приращение аргумента стремится к нулю, т.е. бесконечно малому приращению аргумента соответствует бесконечно малое приращение непрерывной функции.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

$$\lim_{\Delta x \to 0} \Delta y = 0$$

Def $\underline{\mathbf{4}}$ Функция y = f(x) называется непрерывной в окрестности точки x_0 , если она непрерывна в каждой точке окрестности.

4.2 Свойства непрерывных функций

Th1. Элементарные функции непрерывны в любой точке своей области определения. (Элементарные функции это функции sinx, cosx, a^x , x^n , $log_a x$)

Доказательство: Рассмотрим функцию y(x) = cos x, воспользуемся def 3. Зафиксируем любую точку x_0 , дадим в точке x_0 приращение Δx , тогда функция y = cos x получит приращение

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = cos(x_0 + \Delta x) - cos(x_0) =$$

$$= -2 \cdot \underbrace{sin\left(\frac{\Delta x}{2}\right)}_{\text{бесконечно малая при } \Delta x \to 0} \cdot \underbrace{sin\left(x_0 + \frac{\Delta x}{2}\right)}_{\text{ограниченная при } \forall x} =>$$

$$\lim_{\Delta x \to 0} \Delta y = 0$$

т.е. функция y(x) = cosx непрерывна в точке x_0 , а ввиду произвольного выбора этой точки, функция y(x) = cosx непрерывна на всей числовой оси.

Th2 Сумма, разность, произведение, отношение (если знаменатель отличен от нуля) двух непрерывных функций есть функция непрерывная.

Доказательство: Доказательство вытекает из соответствующих теорем о пределах. Например, если функции $y=f_1(x)$ и $y=f_2(x)$ непрерывны в точке x_0 , то функции $g(x)=f_1(x)+f_2(x)$ будет непрерывна в точке x_0 , так как

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} (f_1(x) + f_2(x)) = \lim_{x \to x_0} f_1(x) + \lim_{x \to x_0} f_2(x) = f_1(x_0) + f_2(x_0) = g(x_0)$$

Использовали теорему о пределе суммы функций.

Th3.(о непрерывности сложной функции)

Если функция $\varphi = \varphi(x)$ непрерывна в точке x_0 и $\varphi_0 = \varphi(x_0)$, а функция $y = F(\varphi)$ непрерывна в точке φ_0 , то функции $y(x) = F(\varphi(x))$ будет непрерывна в точке x_0 , т.е. непрерывная функция от непрерывной функции есть функция непрерывная.

Доказательство:

$$\lim_{x \to x_0} y(x) = \lim_{x \to x_0} \left[F(\varphi(x)) \right] = F\left(\lim_{x \to x_0} \varphi(x)\right) = F\left(\varphi\left(\lim_{x \to x_0} x\right)\right) = F(\varphi(x_0)) = F(\varphi(x_0))$$

4.3 Свойства непрерывных функций, непрерывных на отрезке

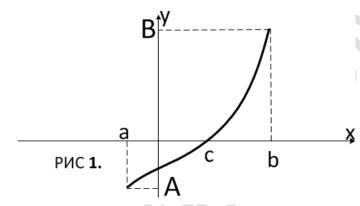
Def <u>5</u> Функция y = f(x) называется непрерывной на отрезке [a, b], если она непрерывна во всех внутренних точках отрезка, а в концевых точках существуют два односторонних предела

$$\lim_{x \to a+0} f(x) = f(a) \quad \lim_{x \to b-0} f(x) = f(b)$$

Th4.(об обращении в нуль функции, непрерывной на отрезке)

Если функция y = f(x) непрерывна на отрезке [a,b] и концах отрезка принимает значения различных знаков, то найдется хотя бы одна точка

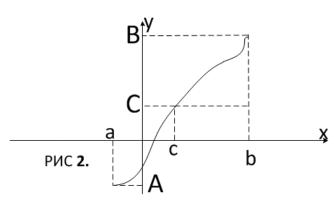
 $c \in [a,b]$ такая, что f(c) = 0, т.е. непрерывная функция не может изменить знак не пройдя через нуль.



Геометрически это означает, что если функция y = f(x) непрерывна на отрезке [a,b] и $f(a) \cdot f(b) < 0$, то найдется хотя бы одна точка $c \in [a,b]$ в которой график функции пересекает ось Ox.

Th5.(о промежуточном значении функции, непрерывной на отрезке)

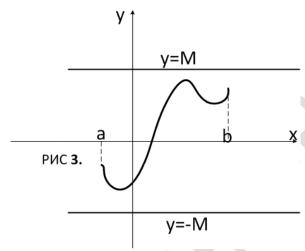
Если функция y = f(x) непрерывна на отрезке [a,b] оси 0x и область изменения функции есть некоторый отрезок [A,B] оси 0y, то для $\forall C \in [A,B] \subset 0y$ найдется хотя бы одна точка $c \in [a,b]$ такая, что f(c) = C, т.е. непрерывная функция должна пройти через все свои промежуточные значения или заполнить сплошь промежуток своего изменения.



Геометрически: если функция y = f(x) непрерывна на отрезке [a,b] и область изменения функции есть некоторый отрезок [A,B] оси Oy, то для каждой ординаты y из множества значений функции обязательно найдется хотя бы одна точка абсциссы из области определения функции.

Th6.(об ограниченности функции, непрерывной на отрезке)

Если функция y = f(x) непрерывна на отрезке [a, b], то она на этом отрезке ограничена, т.е. $\exists M > 0 : \forall x \in [a, b] => |f(x)| < M$.



Геометрически: если функция y = f(x) непрерывна на отрезке [a, b], то график этой функции целиком лежит в полосе от y = -M до y = M.

Th7. (о наибольшем и наименьшем значении функции, непрерывной на отрезке)

Если функция y = f(x) непрерывна на отрезке [a, b], то хотя бы в одной точке функция достигает своего наибольшего и хотя бы в одной точке функция достигает своего наименьшего значений

$$m = \min_{[a,b]} f(x)$$
 и $M = \max_{[a,b]} f(x)$

Геометрически: если функция y = f(x) непрерывна на отрезке [a, b], то

$$\exists c_1 \in [a,b] \ и \exists c_2 \in [a,b] : \forall x \in [a,b]$$

=> $f(c_1) \le f(x) \ и f(c_2) \ge f(x)$

график этой функции целиком лежит в полосе от y = m до y = M.

4.4 Точки разрыва и их классификация

Если функция y=f(x) определена в окрестности точки x_0 , но условия непрерывности из def1 в точке нарушены, то в этой точке функция имеет разрыв

Def <u>5</u> Если не выполняется хотя бы одно условие из определения непрерывности функции в точке x_0 , то такая точка называется точкой разрыва функции y = f(x).

Существует три вида точек разрыва:

- 1. Устранимая точка разрыва
- 2. Точка разрыва 1-го рода
- 3. Точка разрыва 2-го рода

Def 5 Если существует конечный предел функции y = f(x)

при $x \to x_0$ слева и существует конечный предел функции y = f(x)

при $x \to x_0$ справа, и они равны, но в самой точке x_0 функция либо не определена, либо , если определена, то не равна пределам функции слева и справа, тогда точка x_0 — устранимая точка разрыва.

т.е. если

$$\exists \lim_{x \to x_0 + 0} f(x) = A$$

$$\exists \lim_{x \to x_0 - 0} f(x) = B$$

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) \neq f(x_0)$$
 или $A = B \neq f(x_0)$

Лекция 4

то точка x_0 — устранимая точка разрыва.

Пример1: Исследовать на непрерывность функцию f(x), найти точки разрыва, указать характер разрыва функции, доопределить функцию, если это возможно.

$$f(x) = \frac{\sin 3x}{x}$$

Решение: Функция $f(x) = \frac{\sin 3x}{x}$ не определена в точке $x_0 = 0$ и поэтому исследуем функцию на разрыв в этой точке. По первому замечательному пределу

$$\exists \lim_{x \to x_0 + 0} f(x) = A = \lim_{x \to 0 + 0} \frac{\sin 3x}{x} = 3$$

$$\exists \lim_{x \to x_0 - 0} f(x) = B = \lim_{x \to 0 - 0} \frac{\sin 3x}{x} = 3$$

A=B
eq f(0), так как функция не определена в точке $x_0=0$

Следовательно, точка $x_0 = 0 -$ устранимая точка разрыва.

Доопределим функцию $f(x) = \frac{\sin 3x}{x}$ для устранения разрыва функции. Положим f(0) = 3, функция примет вид

$$F(x) = \begin{cases} \frac{\sin 3x}{x} & , & x \neq 0 \\ 3 & , & x = 0 \end{cases} ,$$

Полученная функция непрерывна в точке $x_0=0$, разрыв в точке $x_0=0$ устранен.

Def 7_Если существует конечный предел функции y = f(x) при $x \to x_0$ слева и существует конечный предел функции y = f(x) при $x \to x_0$ справа, и они не равны друг другу, то точка x_0 — **ТОЧКа** разрыва 1-го рода.

т.е., если

$$\exists \lim_{x \to x_0 + 0} f(x) = A \neq \infty$$

$$\exists \lim_{x \to x_0 - 0} f(x) = B \neq \infty$$

$$\lim_{x \to x_0 - 0} f(x) \neq \lim_{x \to x_0 + 0} f(x)$$
 или $A \neq B$

то точка x_0 — точка разрыва 1-го рода.

Пример 2: Исследовать на непрерывность функцию f(x), найти точки разрыва, указать характер разрыва функции

$$f(x) = \begin{cases} \frac{|x-4|}{x-4} \cdot x - 1 & , & x \neq 4 \\ 2 & , & x = 4 \end{cases}$$

Решение: Рассмотрим точку $x_0 = 4$, раскроем модуль и вычислим пределы слева и справа при $x \to 4$

$$\exists \lim_{x \to x_0 + 0} f(x) = A = \lim_{x \to 4 + 0} \left(\frac{|x - 4|}{x - 4} x - 1 \right) = \begin{vmatrix} \text{T. K. } x \to 4 + 0 \\ x > 4 \\ |x - 4| = (x - 4) \end{vmatrix} =$$

$$= \lim_{x \to 4+0} \left(\frac{(x-4)}{x-4} x - 1 \right) = 3 \neq \infty$$

$$\exists \lim_{x \to x_0 = 0} f(x) = B = \lim_{x \to 4 = 0} \left(\frac{|x - 4|}{x - 4} x - 1 \right) = \begin{vmatrix} \text{T. K. } x \to 4 - 0 \\ x < 4 \\ |x - 4| = -(x - 4) \end{vmatrix} =$$

$$= \lim_{x \to 4 = 0} \left(\frac{-(x - 4)}{x - 4} x - 1 \right) = -5 \neq \infty$$

 $A \neq B$ или $3 \neq -5$

Существуют конечные пределы справа и слева не равные друг другу, следовательно, точка $x_0 = 2$ — точка разрыва 1-го рода.

Def <u>8</u> Если хотя бы один из односторонних пределов функции y = f(x) при $x \to x_0$ не существует или равен бесконечности, то точка x_0 — **ТОЧКа** разрыва 2-го рода.

т.е., если

$$\nexists \lim_{x \to x_0 + 0} f(x)$$
 либо $\nexists \lim_{x \to x_0 - 0} f(x)$

или

$$\exists \lim_{x \to x_0 + 0} f(x) = \infty$$
 либо $\exists \lim_{x \to x_0 - 0} f(x) = \infty$

то точка x_0 — точка разрыва 2-го рода.

Пример 3: Исследовать на непрерывность функцию f(x), найти точки разрыва, указать характер разрыва функции

$$f(x) = 2^{\frac{1}{x-4}}$$

Лекция 4

Решение: Функция f(x) = 4 не определена в точке $x_0 = 4$, исследуем функцию на разрыв в этой точке.

Вычислим пределы слева и справа при $x \to 4$

$$\exists \lim_{x \to x_0 + 0} f(x) = A = \lim_{x \to 4 + 0} 2^{\frac{1}{x - 4}} = \left| \lim_{x \to 4 + 0} \frac{1}{x - 4} = +\infty \right| = +\infty$$

$$\lim_{u \to +\infty} 2^{u} = +\infty$$

$$\exists \lim_{x \to x_0 = 0} f(x) = B = \lim_{x \to 4 = 0} 2^{\frac{1}{x - 4}} = \begin{vmatrix} \lim_{x \to 4 = 0} \frac{1}{x - 4} = -\infty \\ \lim_{u \to -\infty} 2^u = 0 \end{vmatrix} = 0 ,$$

один из односторонних пределов функции $f(x) = 2^{\frac{1}{x-4}}$ при $x \to 4$ равен бесконечности, то точка $x_0 = 4$ — moчка разрыва 2-го рода.